\square
Sample Question Paper -2022
Mathematics- Standard (041)

Class- X, Session: 2021-22

TERM II- S01

Time Allowed: $\mathbf{2}$ hours
Maximum Marks: 40

General Instructions:

1. The question paper consists of 14 questions divided into 3 sections A, B, C.
2. All questions are compulsory.
3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
4. Section B comprises of 4questions of 3 marks each. Internal choice has been provided in one question.
5. Section C comprises of 4 questions of 4 marks each.

An internal choice has been provided in one question. It contains two case study based questions.

| 1. | For what value of r, the $r^{\text {th }}$ term of the sequences $3,10,17, \ldots$ and $63,65,67$,
 \ldots are equal?
 OR | |
| ---: | :--- | :--- | :--- |
| Find the first term and common difference of an AP whose $6^{\text {th }}$ term is 12 and
 $8^{\text {th }}$ term is 22. | 2 | |
| 2. | AB and CD are two common tangents to circles which touch each other at C . IF
 D lies on AB such that $\mathrm{CD}=5 \mathrm{~cm}$. What is the length of AB ? | 2 |

CBSEGuess.com

5.	For the following grouped frequency distribution, find the mode:										
	Class 3-6	6-9	9-12	12-15	15-18	818	- 21	1-24			
	Frequency 2	5	10	23	21	12					
6.	Find the value of k in the given polynomial such that 3 becomes the zero of the polynomial $\mathrm{p}(x)=2 x^{2}-3 k x+2$. OR Find if $x=\frac{5}{6}$ is a solution of quadratic equation $x+\frac{1}{x}=\frac{13}{6}$										
	SECTION- B										
7.	In a study of patients, the following data were obtained. Find the median.										
	Age (in years)	10-19	20-29	30-39	40-49	50-59	60-69	70-79	-8		
	Number of cases		0	1	10	17	38				
8.	A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point A on the ground is 60° and the angle of depression of the point A from the top of the tower is 45°. Find the height of the tower. OR A man on the top of a vertical observation tower observes a car moving at a uniform speed coming directly towards it. If it takes 12 minutes for the angle of depression to change from 30° to 45°, how soon after this will the car reach the observation tower?										
9.	Let $A B C$ be triangle in which $A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}, A C=4 \mathrm{~cm}$. The circle through B and C is drawn. Construct the tangents from A to the circle.										
10.	The mean of the following data is 266.25 . Find the missing frequencies f_{1} and f_{2}.									3	
	Classes	$\begin{aligned} & 150- \\ & 200 \end{aligned}$	$\begin{aligned} & 200- \\ & 250 \end{aligned}$	$\begin{aligned} & 250- \\ & 300 \end{aligned}$	$300-$	$\begin{aligned} & 350- \\ & 400 \end{aligned}$	$\begin{aligned} & 400- \\ & 450 \end{aligned}$	$\begin{aligned} & 450- \\ & 500 \end{aligned}$	Total		
	Frequencies 24		33		30	f_{2}	16	7	200		
	SECTION- C										
11.	The diameters of the internal and the external surfaces of a hollow spherical shell are 6 cm and 10 cm respectively. It is melted and recast into a solid cylinder of height 8 cm . Find the radius of the cylinder.									4	
12.	From point P, two tangents PA and PB are drawn to a circle with centre O. If OP is the diameter of the circle, show that $\triangle \mathrm{APB}$ is equilateral									4	
13.	CASE STUDY-1 An aeroplane falls vertically due to some mechanical problems and makes angles of elevation of 60° and 30° at an observing point. If the distance between the two points A and B is 1000 m . (a) Find the height at which the aeroplane faces the mechanical problems.									4	

[^0]

CbSe	
gguess	CBSEGuess.com

[^0]: CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide |CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

